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Abstract

A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried
out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configura-
tion was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature
was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the fric-
tion velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctu-
ations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian
fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented.
� 2005 Published by Elsevier Ltd.
1. Introduction

Although Toms� effect, which is the reduction of tur-
bulent friction drag with the addition of a very small
amount of long-chain polymer into pipe liquid flow,
was discovered in 1948 [1] and many experiments have
been performed to study this phenomenon in the dec-
ades since then, the mechanism of drag-reducing tur-
bulent flow by additives has not been satisfactorily
clarified. This is partly due to the limitation of present
experimental facilities, with which it is extremely difficult
to measure various instantaneous quantities such as
velocity and pressure in the vicinity of the walls with suf-
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ficient accuracy. DNS is an alternative tool to study the
physics of turbulence and can identify instantaneous tur-
bulent flow structures for thorough analysis. DNS has
recently been used to study drag-reducing flow by addi-
tives [2–11], and it was found that a viscoelastic model
can reproduce most of the experimental observations
such as wider buffer layer, reduction of Reynolds shear
stress and larger spacing between low-speed streaks.
Experiments show that due to the dramatic suppression
of turbulence, the heat transfer coefficients in drag-
reducing flows with surfactant additives are also reduced
[12,13]. A better understanding of the mechanism of tur-
bulent heat transfer in drag-reducing flow by additives is
interesting and important from both scientific and engi-
neering perspectives. To the author�s knowledge, no
numerical simulation of the turbulent heat transfer of
drag-reducing flow has been carried out. In this paper

mailto:yasuo@rs.noda.tus.ac.jp


Nomenclature

c conformation tensor
Cf friction factor ¼ 2sw=qU2

b

cP specific heat at constant pressure (J/(kg K))
Ett(kz) one-dimensional energy spectra of tempera-

ture fluctuations 2
NzDz�

PNz
n¼1h

0þ nDz�ð Þ
��

e�i2pkn=NzDz�j2; k ¼ 1; 2; . . . ;Nz=2
h half height of the channel (m)
h* heat transfer coefficient (W/(m2 K))
k thermal conductivity (W/(m K))
kz wave number for spanwise direction = 2pk/

(NzDz*), k = 1,2, . . . ,Nz/2

kh temperature variance ¼ h0þ
2

=2
Nu Nusselt number = 2h*h/k
p pressure (Pa)
Pr molecular Prandtl number
Prt turbulent Prandtl number = mt/at
qw wall heat flux (W/m2)
qtotal total heat flux (W/m2)
Reb Reynolds number = 2qUbh/gs
Res Reynolds number = qush/gs
t time (s)
t nondimensional time
T temperature (�C, K)
Tb bulk mean temperature (�C)
Ts friction temperature = qw/qcPus
u velocity (m/s)
U mean streamwise velocity (m/s)
Uc mean centerline velocity (m/s)
Ub mean bulk velocity (m/s)
us friction velocity ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
(m/s)

Wes Weissenberg number ¼ qku2s=gs
x1,x streamwise direction (m)

x2,y wall-normal direction (m)
x3,z spanwise direction (m)

Greek symbols

a mobility factor
at eddy-diffusivity forheat¼�v0þh0þ=dHþ=dyþ

b ratio = ga/gs
ga dynamic shear viscosity of additive contri-

bution (Pa s)
gs dynamic shear viscosity of solvent contribu-

tion (Pa s)
g0 shear viscosity of the viscoelastic solution at

zero-shear rate = ga + gs (Pa s)
k relaxation time (s)
h local temperature difference = hTwi � T

(�C)
H par mean local temperature (�C)
Hb mixed mean temperature (�C)
mt eddy-diffusivity for momentum ¼ �u0þv0þ=

dUþ=dyþ

q density (kg/m3)
sw statistically averaged wall shear stress (kg/

(m s2))

Superscripts and subscripts

( ) 0 fluctuating component
( )+ normalized by us, q, gs and Ts

( )* nondimensional coordinate
( )rms root-mean-square fluctuations
h i enable average over the spanwise direction

and time
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we first attempt to perform a DNS study on the turbu-
lent heat transfer of the drag-reducing flow in a channel
with uniform heat flux imposed on the walls at a low
Reynolds number Res = 150. We then compare the
results with those of Newtonian flow.
2. Fundamental equations and computational method

The flow to be studied was a fully-developed channel
flow as shown in Fig. 1, in which x, y and z are the
streamwise, wall-normal and spanwise directions, respec-
tively, and the corresponding velocity components are u,
v and w. The top and bottom walls were heated by a uni-
form heat flux qw. In this study we employed a viscoelas-
tic model—Giesekus constitutive equation to calculate
the extra stress due to additives. The dimensionless gov-
erning equations for the fully-developed turbulent isoflux
channel flow can be written as
ouþi
ox�i

¼ 0 ð1Þ

ouþi
ot�

þ uþj
ouþi
ox�j

¼ � opþ

ox�i
þ 1

Res
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 !
þ b
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ohþ
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ohþ
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Uþ dy

þ 1

ResPr
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 !
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þ Res
Wes

½cþij � dij þ aðcþim � dimÞðcþmj � dmjÞ� ¼ 0 ð4Þ

In the above equations, cþij is the conformation com-
ponent due to the elasticity of the solution, and b
(b = ga/gs) is the ratio between the additive contribution
ga and solvent contribution gs to the zero-shear rate
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Fig. 1. Computational domain.
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viscosity g0 (g0 = ga + gs). The Reynolds number and
Weissenberg number are defined as: Res = qush/gs and
Wes ¼ qku2s=gs, where q, k, us and h are the fluid density,
relaxation time, friction velocity and half the channel
height, respectively. Note that the Reynolds number
and Weissenberg number are based on the viscosity of
solvent. By setting b = 0, the Navier–Stokes equation
for a Newtonian fluid is obtained. A calculation was car-
ried out for the Newtonian fluid for comparison. Table 1
shows the dimensionless computational parameters.

It is known that the smallest scale in temperature
fluctuation decreases with the increase of Prandtl num-
ber inversely proportional to Pr1/2 [15]. At a first step,
the change of the turbulent characteristics by the visco-
elasticity was investigated. In order overcome thermal
resolution barrier by relatively large Prandtl number of
water, we change the Prandtl number to 0.71. Our next
step is to use fine meshes for the calculation of high Pra-
ndtl number turbulence flows.

The periodic boundary conditions were imposed in
both the streamwise (x-) and spanwise (z-) direction,
while nonslip and isoflux boundary conditions were
adopted for the top and bottom walls. Unlike velocity
and temperature components, the conformation compo-
nents at the walls evolve in time and their values were
determined from Eq. (3) by setting the velocity compo-
nents at the walls zero. An instantaneous velocity field
of Newtonian fluid at Reynolds number Res = 150 from
our previous work [10] was adopted as the initial veloc-
ity field. The initial fields for pressure and conformation
tensor were simply set as a zero field.

A fractional step method was employed for the com-
putation algorithm. The Adams–Bashforth scheme was
used for the time advancement except that the implicit
method was adopted for the time advancement of the
Table 1
Computational parameters

Res Wes b a Lx · Ly ·

Drag-reducing flow 150 40 0.2 0.001 10 h · 2 h
Newtonian 150 · 0 · 7.5 h · 2 h
pressure. For spatial discretization, a second-order finite
difference scheme was employed. In the preceding
DNSs, spectral method was preferred owing to its high-
er-numerical accuracy. But finite difference scheme is
easier to be applied to complex geometry and compli-
cated boundary conditions. The studies [2,16,17] show
that the resolution of finite difference schemes is compa-
rable to that of spectral method at least for lower-order
statistical quantities as the grid size is fine enough to sus-
tain turbulence. This does not mean that the finite differ-
ence scheme is as accurate as spectral method. But it has
been proven that as fine as the mesh required by DNS is
satisfied, the solutions of the two schemes are compara-
ble. On the other hand, unlike Newtonian fluid flow,
DNS of viscoelastic flow is prone to break down due
to the hyperbolic nature of the constitutive equation.
To enhance numerical stability, artificial diffusion terms
were introduced in the constitutive equations by using
spectral method [4,5,7]. It is well known that for the
DNS calculation significant artificial viscosity should
be avoided [16] and it is necessary to analyze the effect
of artificial diffusion (AD) term on the solution accu-
racy. Our previous analysis shows that the error intro-
duced by the AD term is much larger than the
discretization error of the spectral method and actually
the AD spectral method is a lower-order scheme [9].
For finite difference scheme we employed a high-resolu-
tion scheme, MINMOD to descretizte the convective
term in the constitutive equation and by using this
scheme no artificial term was required. It was found that
MINMOD scheme is not only more accurate but also
more stable than artificial diffusion spectral method
[9]. For this reason, we chose the high-resolution finite
difference scheme for spatial discretization in the present
study. To avoid zigzag pressure field, staggered grid was
employed in which pressure and conformation compo-
nents were stored at the cell center while velocity compo-
nents locate at the cell faces.

A larger computational domain was used for the
drag-reducing flow because coherent structures in the
turbulent flow of the drag-reducing flow are much more
elongated due to the relaxation time, and a coarser mesh
was adopted for the drag-reducing flow because of larger
eddy sizes in the drag-reducing flow [9–11].

The friction factor and Nusselt number are evaluated
by

Cf ¼
sw

qU 2
b=2

¼ 2

Uþ2

b

ð5Þ
Lz Nx · Ny · Nz Dx+ Dy+ Dz+

· 4 h 96 · 128 · 96 15.6 0.2–4.5 6.3
· 2.5 h 128 · 128 · 128 8.8 0.2–4.5 2.9
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and

Nu ¼ 2h�h
k

¼ 2ResPr=H
þ
b ð6Þ

The drag-reduction rate DR% and heat transfer
reduction HTR% are defined as the reduction of friction
factor and Nusselt number with respect to the Newto-
nian fluid at the same mean Reynolds number for the
Newtonian fluid and the drag-reducing flow by
additives.
3. Results

First we concisely compared the results of Newtonian
fluid with experimental data and previous numerical
results [18] to verify our code. The calculated mean Rey-
nolds number Reb = 2qUbh/l based on the mean veloc-
ity and the height of the channel for Newtonian fluid is
4646. The calculated friction coefficient and the ratio of
the mean centerline velocity to the bulk mean velocity
(Uc/Ub) are 8.34 · 10�3 and 1.18, respectively. These
values agree well with the corresponding values of
8.84 · 10�3 and 1.16, which are evaluated by Dean�s
correlations [19], cf ¼ 0.073Re�0.25

b and U c=Ub ¼
1.28Re�0.0116

b , respectively. The calculated Nusselt num-
ber is 15.3, which is in good agreement with the value
15.9 evaluated by the correlation of Kays and Crawford
Nu ¼ 0.022Re0.8b Pr0.5 [20]. The mean temperature distri-
bution is given in Fig. 2, in which the temperature profile
of Kasagi et al. at the same computational parameters is
presented for comparison. The agreement between the
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Fig. 2. Mean temperature profiles.

Table 2
Mean flow variables

Ub Uc Uc/Ub Reb Cf

Drag-reducing flow 21.5 26.6 1.24 6450 0.00
Newtonian 15.5 18.3 1.18 4640 0.00
two temperature profiles is relatively good. The agree-
ments for other quantities between the present results
and those of Kasagi et al. [18] are seen in the subsequent
figures.

Mean flow variables such as mean Reynolds number,
friction factor and Nusselt number are given in Table 2.
In Table 2, c�f and Nu* were evaluated by Dean�s corre-
lation [19] and Kays and Crawford�s correlation [20],
respectively, for comparison. As shown in Table 2, the
friction factor and Nusselt number of the drag-reducing
flow are much smaller than those of the Newtonian
fluid, and a drag-reduction rate of 46.8% and heat trans-
fer reduction rate of 54.5% were obtained for the drag-
reducing flow. The larger heat transfer rate than drag-
reduction rate has been confirmed by experiments [12–
14]. The experimental phenomena such as wider buffer
layer, reduction of Reynolds shear stress and larger
streak spacing between low-speed streaks were repro-
duced in the simulation (data not shown).

It should be pointed out that we compared the drag-
reduction characteristics by use of a Giesekus model
with the experimental data and good agreement was ob-
tained [11]. Recently the author�s group experimentally
studied the characteristics of turbulence transport for
momentum and heat [14] but heat transfer was in the
developing region. To the author�s best knowledge no
one has measured the turbulence transport for a fully
developed heat transfer of a drag-reducing flow. Thus
in this study we did not make a quantitative comparison
between the numerical simulation and experimental
data. However the major experimental findings in the
developing heat transfer regions [14] are reproduced in
the numerical simulation as shown in the subsequent
figures such as the upshift of mean temperature profile,
increase of temperature fluctuations, decrease of wall-
normal turbulent heat flux and the decrease of the
cross-correlation coefficients between wall normal veloc-
ity and temperature.

The dimensionless temperature profiles as a function
of y+ are shown in Fig. 2. The mean temperature profiles
of the Newtonian fluid and drag-reducing flow collapse
to the linear relationship H+ = Pry+ in the viscous sub-
layer and the profile of the drag-reducing flow upshifts
in the logarithmic layer. Fig. 3 shows that the stream-
wise velocity fluctuations are appreciably enhanced
while the fluctuations of the other two velocity compo-
nents are dramatically depressed by additives. Fig. 4
shows that the additives activates the temperature fluc-
tuation. The maximum temperature fluctuation intensity
C�
f Nu Nu* DR% HTR%

433 0.00815 9.3 20.7 46.8 54.5
834 0.00884 15.3 15.9 · ·
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of the drag-reducing flow is 4.2, which is much larger
than the value of 2.4 of the Newtonian fluid. The peak
temperature fluctuation is located at y+ = 35, which is
shifted to the bulk flow region as compared to the peak
position y+ = 18 of the Newtonian fluid. Note this value
is larger than that of the maximum streamwise velocity
fluctuation y+ = 28. Fig. 5 shows that the streamwise
turbulent heat flux of the drag-reducing flow is much lar-
ger than that of Newtonian flow and the position of its
maximum value is shifted toward the bulk flow region.
The significant increase of the streamwise heat flux is
primarily owing to both the increase of the streamwise
velocity fluctuation and the increase of the temperature
fluctuation.

Fig. 6(a) and (b) compare velocity-streaks and ther-
mal-streaks at y+ = 15 for the drag-reducing flow. It is
seen that the thermal streaky structures closely resemble
the velocity streaky structures, and that high-tempera-
ture fluids are associated with high-speed streaks and
low-temperature fluids are associated with low-speed
steaks. The similarity indicates a close correlation be-
tween the streamwise velocity component and tempera-
ture. In fact, as shown in Fig. 7, the cross-correlation
coefficients between u and h have large values close to
unity. As compared to the Newtonian fluid, Ruh of the
drag-reducing flow increases. The close correlation is an-
other cause for the increase of the streamwise turbulent
heat flux. Fig. 6(b) and (c) compare snapshots of the
instantaneous temperature fluctuations in the x–z plane
located at y+ = 15 for drag-reducing flow and Newto-
nian flow. It is seen that the thermal streaks are more
elongated and thermal streak spacing expands by
additives.

For the fully developed channel flow between the iso-
flux walls, the total heat flux can be deduced from the
averaged energy equation as follows:

qþtotal ¼ 1�
R yþ

0
Uþ dyþR Res

0
Uþ dyþ

¼ 1

Pr
oHþ

oyþ
� v0þh0þ ð7Þ

Unlike streamwise turbulent heat flux, the wall-
normal turbulent heat flux of drag-reducing flow by
additives decreases as compared to Newtonian flow as
shown in Fig. 8. The position of its maximum value also
shifts to the bulk flow. The strongly suppressed wall-
normal velocity fluctuation shown in Fig. 3 is a cause
of the reduction of wall-normal heat flux. For the
drag-reducing flow, there is an increase of the conduc-
tive heat flux to compensate for the decrease of wall-nor-
mal heat flux as shown in Fig. 8. This means conduction
plays a more important role in heat transportation in the
drag-reducing flow. Fig. 7 shows that compared to the
Newtonian case, both Ruv and Rvh decrease and
the position of their maximum value shifts to the bulk
flow. The decreases of Ruv and Rvh indicate that the
correlation between the velocity components u and v,
and that between v and h decrease. These decorrela-
tions are believed to be the cause of drag reduction
and heat transfer reduction. In addition, for both the
Newtonian fluid and drag-reducing flow, the agreement
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between Ruv and Rvh is good. These similarities indicate
that the wall-normal turbulent heat flux and Reynolds
shear stress are generated by a similar turbulent mecha-
nism for both Newtonian flow and drag-reducing flow
by additives.

The nondimensional eddy diffusivities of momentum
and heat are shown in Fig. 9. The decrease of both the
eddy diffusivities of the drag-reducing flow indicates that
less frequent and weaker turbulent transportation occur
in the heat and fluid flow process. The turbulent Prandtl
number, defined as the ratio between eddy diffusivities
for momentum and heat, is shown in Fig. 10. The turbu-
lent Prandtl numbers for both the drag-reducing flow
and the Newtonian fluid in the vicinity of the wall
approach unity. In the logarithmic region, the turbulent
Prandtl numbers of the drag-reducing flow are larger
that those of the Newtonian fluid.
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The following are the budget equations for stream-

wise turbulent heat flux u0þh0þ, wall-normal turbulent
heat flux v0þh0

þ
, Reynolds normal stress u0þu0þ and Rey-

nolds shear stress u0þv0þ , respectively
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The various terms in the budget of the streamwise
turbulent heat flux and wall-normal turbulent heat flux
are plotted in Figs. 11 and 12 as a function of dimen-
sionless wall distance y+. As compared to the Newto-
nian fluid, an additional viscoelastic contribution term
is included in the budget of the turbulent heat fluxes.
The maximum and minimum values associated with var-
ious turbulence quantities of the drag-reducing flow,
such as production, display a dramatic decrease. The
locations where production attains its maximum value,
and where molecular diffusion and turbulent diffusion
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Fig. 14. Budget terms of Reynolds shear stress u0þv0þ of the
drag-reducing flow by additives.
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reach their minimum values, shift from the wall region
to the bulk flow region. These shifts are consistent with
the expansion of the buffer layer. Though the additives
significantly change the values and distribution of the
budget terms, the production, turbulent diffusion,
molecular diffusion and other terms show identical
trends in variation between Newtonian solution and
drag-reducing flow, with the latter varying flatly. In
the budget of streamwise turbulent heat flux, the visco-
elastic contribution acts as a weak sink term except in
the vicinity of the wall, at which it acts as a minute pro-
duction term. However, in the budget of wall-normal
turbulent heat flux, the viscoelastic term is of the same
order of magnitude as the other terms (for example, pro-
duction term) and it acts as a large sink term. There are
three peaks (two positive and one negative peaks) for the

viscoelastic term in the budget of v0þh0þ, which are
located near the peaks of the molecular diffusion, turbu-
lent diffusion and temperature pressure-gradient correla-
tion. Figs. 13 and 14 show the budget of Reynolds
normal stress u0þu0þ and Reynolds shear stress u0þv0þ,
respectively. Note that the profile of each term in the

budget of u0þh0þ and v0þh0þ is quite similar to the corre-

sponding term in the budget of u0þu0þ and u0þv0þ, respec-
tively. These again indicate a high correlation between u 0

and h 0 as mentioned previously.
The budget equation of the fluctuating temperature

variance kh, in the fully developed turbulent channel
thermal field can be written as

0 ¼ u0þh0þ
o Th iþ
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Fig. 15. Budget terms of temperature variance. (a) Newtonian
fluid, (b) drag-reducing flow.
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Fig. 16. One-dimensional energy spectrum of the temperature
fluctuations vs the spanwise wavenumber at y+ = 15.
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The budgets of the temperature variance are shown
in Fig. 15. Once again, the position of the peak value
shifts toward the bulk flow due to the action of addi-
tives. Although the peak values decrease, the magnitudes
of the quantities are not depressed in the whole region.

Fig. 16 the one-dimensional energy (Fourier) spec-
trum of temperature fluctuation at y+ = 15. Ett is one-
dimensional energy spectra of temperature fluctuation.
Kz is the wave number for the spanwise direction. It is
seen the energy contained in low wavenumber modes in-
crease and the peak of the energy spectrum shifts to a
higher wavelength in the drag-reducing flow, indicating
a larger thermal streak spacing in the drag-reducing
flow. This also indicates the large scale temperature fluc-
tuations are created but small scales of temperature fluc-
tuations are dampened by additives.
4. Conclusions

A DNS on the turbulent heat transfer in the channel
flow of a drag-reducing flow was carried out. The
computational parameters were Res = 150, Wes = 40,
a = 0.001 and b = 0.2 for the Giesekus model employed.
The following conclusions can be drawn:

(1) A drag-reduction rate of 46.8% and heat transfer
reduction rate of 54.5% were obtained.

(2) The intensity of temperature fluctuation increases
appreciably by additives.

(3) As compared to Newtonian flow, the streamwise
turbulent heat flux of the drag-reducing flow
becomes larger and the position of its peak value
shifts toward the bulk flow region. The increase of
the streamwise turbulent heat flux is due to the
enhancements of the streamwise velocity fluctua-
tion and temperature fluctuation, and also due
to the increase of the correlation between the
streamwise velocity fluctuation and temperature
fluctuation.

(4) The wall-normal turbulent heat flux of the drag-
reducing flow decreases, which is due to the
strongly suppressed wall-normal velocity fluctua-
tion intensity and the lower correlation between
the wall-normal velocity fluctuation and the tem-
perature fluctuation.

(5) The additives decreases the magnitude of the bud-
get terms in the streamwise and wall-normal tur-
bulent heat fluxes, and the total contribution of
the additives acts as a weak sink term except in
the vicinity of the wall in the budget of the stream-
wise turbulent heat flux and as a large sink term in
the budget of the wall-normal heat flux.

(6) As compared to the Newtonian fluid, the thermal
streak spacing of the drag-reducing flow by addi-
tives expands.
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